Assignment 4 # STUDENT LEARNING OUTCOMES - Be able to recognize their own misconceptions, especially: - o Misconception #1: Evolution by natural selection occurs only slowly - Misconception #2: Agency Adaptation by natural selection occurs due to need (i.e., organisms needed to adapt in response to a selection pressure) - Dispel their misconceptions and understand why their prior understanding is inaccurate # **MODULE WALK-THROUGH** | Introduction | | | |-------------------|---|--| | Topic introduced: | Evolution includes mechanisms such as genetic drift and natural selection This module will focus on natural selection as it is the only mechanism that consistently results in adaptation Learning outcomes | | | Visual format: | - Illustration | | | Experiment 1 | | | | Topic introduced: | - Generation time | | | Purpose: | Introduce the concept of generation time in the context of natural selection Relatively simple concept to help students familiarize with module process Promote students to recognize whether or not they understand the concept of generation time Promote students to understand how the length of generation time may impact rate of adaptation | | | Visual format: | Animation of each scenario (short vs long generation time) Feature: graphical representation of generation time | | | Structure: | Predict: How does the length of generation time impact the rate of adaptation? Experiment: (note – no order to scenarios, dependent on whichever the student picks first) Scenario 1: Toggle on short generation time / off long generation time – show population quickly adapting to strong selection pressure (such as a toxic dump to the species' environment) Scenario 2: Toggle on long generation time / off short generation time – show population slowly adapting to the same strong selection pressure | | Observation and analysis: 2-3 questions to direct student's attention to... What happened in the experiment How their prediction may be correct/wrong (and why) o Probe for their understanding of generation time (how deeply they understand the concept) Background: Adaptation may occur faster since generation time is shorter so there are more "rounds" of reproduction and selection Experiment 2 Topic introduced: **Genetic variation** and (secondarily) population size Introduce the concept of genetic variation and its relationship to Purpose: population size Promote students to recognize the misconception of "agency" Promote students to understand how genetic variation plays a role in natural selection; that genetic variation (advantageous traits) must be present in order for adaptation by natural selection to occur Visual format: Animation of each scenario (large vs small population size) Feature: visual representation of genetic variation Structure: *Predict:* How may population size and diversity impact the rate of adaptation? Experiment: (note – no order to scenarios, dependent on whichever the student picks first) Scenario 1: Toggle on large population size / off small population size – show a highly diverse population that can quickly adapt to strong selection pressure o Scenario 2: Toggle on small population size / off large population size – show a population with little diversity that either slowly or does not adapt to the same strong selection pressure Observation and analysis: 3-4 questions to that prompts students to.... Explain what happened in the experiment Explain how their prediction may be correct/wrong (and why) o Recognize their misconceptions regarding agency Recognize that without the genetic basis (advantageous traits) present, adaptation by natural selection cannot occur o Evaluate their understanding of genetic variation (diversity) and population size Background: Larger population size with higher diversity means higher genetic variation leading to more chances of beneficial/advantageous mutations (in terms of rapid evolution, this means it would take less | | time to adapt since you're working with a large pool of mutations already) For example, tomcod fish develop resistance to toxic waste dump versus other animals who do not (due to not having genetic traits to do so) | |------------------------|--| | Misconception targeted | Adaptation occurs due to need; if advantageous traits aren't present
for adaptation, the species cannot adapt no matter how strongly they
"need" to | | Experiment 3 | | | Topic introduced: | - Heritability | | Purpose: | Introduce the concept of heritability and its connection to genetic variation Promote students to recognize the misconception of "agency" Promote students to understand how heritability plays a role in natural selection; that genetic variation (advantageous traits) must be present AND heritable in order for adaptation by natural selection to occur | | Visual format: | Animation of each scenario (heritable vs non-heritable trait) Feature: visual representation of genetic variation, and heritable and non-heritable traits | | Structure: | Predict: How may genetic heritability impact adaptation? Experiment: (note – no order to scenarios, dependent on whichever the student picks first) Scenario 1: Toggle on "traits are heritable" / off "traits are not heritable" – show a population that can quickly adapt to strong selection pressure, organisms with a certain trait are consistently selected for and are able to survive and reproduce Scenario 2: Toggle on "traits are not heritable" / off "traits are heritable" – show a population that does not adapt to the same strong selection pressure, random selection of organisms regardless of traits Observation and analysis: 3-4 questions to that prompts students to Explain what happened in the experiment Explain how their prediction may be correct/wrong (and why) Evaluate their understanding of heritability including genotype and phenotype Recognize their misconceptions regarding agency Recognize that without the heritability and genetic basis (advantageous traits) present, adaptation by natural selection cannot occur | | Background: | Natural selection requires genetic traits that are heritable and can therefore be passed down and selected for Non-heritable traits would not be selected (in subsequent generations) | |------------------------|---| | Misconception targeted | Adaptation occurs due to need; if genetic (genotypic) traits aren't
heritable, the species cannot adapt no matter how strongly they
"need" to | | Experiment 4 | | | Topic introduced: | - Selection pressure and differential survival | | Purpose: | Introduce the concept of selection pressure and differential survival Promote students to recognize whether or not they understand the concept of selection pressure and differential survival Promote students to understand how the strength of selection pressure may impact differential survival and therefore, the rate of adaptation | | Visual format: | - Animation of each scenario (strong vs weak selection pressure) | | Structure: | Predict: How does the strength of selection pressure impact the rate of adaptation? Experiment: (note – no order to scenarios, dependent on whichever the student picks first) Scenario 1: Toggle on strong selection pressure / off weak selection pressure – show population rapidly having a trait that becomes selected for (ie: adaptation rapidly occurring) Scenario 2: Toggle on weak selection pressure / off strong selection pressure – show population stay relatively the same (ie: no/slow adaptation occurring) Observation and analysis: 2-3 questions to direct student's attention to What happened in the experiment How their prediction may be correct/wrong (and why) Probe for their understanding of selection pressure and differential survival (how deeply they understand the concept) | | Background: | Natural selection requires differential survival Larger selection pressure means more differences in survival such as climate change/environmental impacts (toxic dump, for example: tomcods quickly developed increased resistance to PCBs when a company dumped them in the Hudson River) | | Experiment 5 | | |---------------------------|--| | Topic introduced: | - Rapid evolution (by natural selection) | | Purpose: | Application of all prior concepts in a more free-form environment
(less guided) to remediate a new misconception Promote students to recognize the misconception of slow evolution | | Visual format: | Simulation with 4 toggles that students can do different combinations of: Generation time Population size Heritability Selection pressure | | Structure: | Predict: Does evolution by natural selection occur rapidly or slowly? Experiment aim: Short generation time, large population with high genetic variation, trait is heritable, and high selection pressure leads to the population quickly adapting to a selection pressure Observation and analysis: 4-5 questions to that prompts students to Explain what happened in the experiment Explain how their prediction may be correct/wrong (and why) Evaluate their understanding of how the different variables worked together Recognize their misconceptions regarding slow evolution | | Background: | Rapid evolution by natural selection generally favours populations
with a short generation time, large variation / large population size,
advantageous trait must be heritable, and high selection pressure | | Misconception
targeted | - Evolution by natural selection only occurs slowly | | Summary | | | Structure: | 4-5 concluding questions that summarizes the major take-aways of the module Visual format may include illustrations or small non-static graphic | # **CASE STUDIES** # **Potential case studies** - Elephants - Galapagos finches - Pocket mice #### Integration of case studies: - We will aim to utilize only one or two case studies throughout in order to prevent having to introduce new information (thereby minimizing cognitive load) - Case studies will mostly likely include only one group (genus) of animals however different features are selected for depending on the experiment type #### **CURRENT TIMELINE** - December 2017 - Learn C#, After Effects (etc.) - Storyboard / Key path scenario development - o Content development and implementation - Visual scaffold design - o Wireframe ## January 2018 - o Ethics - Content development and implementation - Visual scaffold design - o Wireframe ## February 2018 - Needs assessment - Development of prototype - o Graphic user interface design #### March 2018 - Development of prototype - o Graphic user interface design - Prototype testing - o Formative assessment ## - April 2018 - Development of prototype - o Graphic user interface design - Prototype testing - o Formative assessment #### May 2018 o Summative assessment #### - June 2018 - o Data analysis - Paper writing ## FINAL NOTES FROM COMMITTEE MEETING (TUESDAY, DEC 5TH 2017) - Module should focus on promoting student recognition of their own misconceptions and acting as a tool for professors to diagnose misconceptions - o Built in formative assessment (not summative) - Alignment with threshold concepts - Graphic representations (such histograms etc) should also include visual scaffolds that help students understand the graphics - Consider using Javascript, HTML and CSS (instead of C#/Unity)